i0.aviso/pretty Documentation
Release 0.1.23

Howard M. Lewis Ship

February 27, 2016

Contents

1 Sometimes, neatness counts 1
2 License 3
2.1 ANSIFormatting e e 3
2.2 Formatted EXceptions e 4
23 Leiningen Plugin L 6
24 Binary Output o o e e e e e e e e e e e e e e e e 7
2.5 Columnar OULPUL o v v e 7

CHAPTER 1

Sometimes, neathess counts

If you are trying to puzzle out a stack trace, pick a critical line of text out of a long stream of console output, or
compare two streams of binary data, a little bit of formatting can go a long way.

That’s what the io.aviso/pretty library is for. It adds support for pretty output where it counts:
* Readable output for exceptions
* ANSI font and background color support
* Hex dump of binary data
* Hex dump of binary deltas
* Formatting data into columns

Here’s an example of pretty at work:

io.aviso/pretty Documentation, Release 0.1.23

user=> (pst)
clojure.core/eval

user/eval 2007
user/make-exception
user/update-row
user/make-jdbc-update-worker/reify/do-work
user/jdbc-update

java.sql.SQLException: Database failure

SELECT F0O, BAR, BAZ
FROM GNIP
failed with ABC123

SQLState: "ABC"
errorCode: 123
java.lang.RuntimeException: Failure updating row
java.lang.RuntimeException: Request handling exception
nil
user=>

2 Chapter 1. Sometimes, neathess counts

CHAPTER 2

License

Pretty is released under the terms of the Apache Software License 2.0.

2.1 ANSI Formatting

The i0.aviso.ansi namespace defines a number of functions and constants for producing ANSI escape codes.

((“"The following text will be " ("bold and red") "."))

he following text will be bold and red.

For each of the supported colors (black, red, green, yellow, blue, magenta, cyan, and white) there will be four functions
and four constants:

* color - function to set text color

* color-bg - function to set background color

* bold-color - function to set enable bold text and the text color

* bold-color-bg - function to enable bold text and the background color

* color-font - constant that enables the text color

¢ color-bg-font - constant that enables the color as background

* bold-color-font - constant that enables the text color in bold

* bold-color-bg-font - constant that enables the bold color as background

The functions are passed a string and wrap the string with ANSI codes to enable an ANSI graphic representation for
the text, with a reset after the text.

Note that the exact color interpretation of the ANSI codes varies significantly between platforms and applications, and
is frequently configurable, often using themes. You may need to adjust your application’s settings to get an optimum
display.

In addition there are functions bold, inverse, and italic and constants bold-font, inverse-font, italic-font, and reset-font.

The above example could also be written as:

(println (str "The following text will be " bold-red-font "bold and red" reset-font ".")‘)

http://www.apache.org/licenses/LICENSE-2.0
https://en.wikipedia.org/wiki/ANSI_escape_code

io.aviso/pretty Documentation, Release 0.1.23

2.2 Formatted Exceptions

Pretty’s main focus is on formatting of exceptions for readability, addressing one of Clojure’s core weaknesses.

2.2.1 Rationale

Exceptions in Clojure are extremely painful for many reasons:
* They are often nested (wrapped and rethrown)

* Stack frames reference the JVM class for Clojure functions, leaving the user to de-mangle the name back to the
Clojure name

* Stack traces are output for every exception, which clogs output without providing useful detail
« Stack traces are often truncated, requiring the user to manually re-assemble the stack trace from several pieces
* Many stack frames represent implementation details of Clojure that are not relevant

This is addressed by the i0.aviso.exception/write-exception function; it take an exception and writes
it to the console, xout *.

This is best explained by example; here’s a SQLException wrapped inside two RuntimeExceptions, and printed nor-
mally:

java.lang.RuntimeException: Request handling exception
at user$make_exception.invoke (user.cl3:30)
at userS$Sevall322.invoke (NO_SOURCE_FILE:1)
at clojure.lang.Compiler.eval (Compiler.java:6619)
at clojure.lang.Compiler.eval (Compiler. java:6582)
at clojure.core$eval.invoke (core.clj:2852)
at clojure.mainSreplSread_eval_print_ 6588$fn__ 6591 .invoke (main.clj:259)
at clojure.mainSreplS$read_eval_print__6588.invoke (main.clj:259)
at clojure.main$replS$fn__ 6597.invoke (main.clj:277)
at clojure.mainSrepl.doInvoke (main.clj:277)
at clojure.lang.RestFn.invoke (RestFn.java:1096)
at clojure.tools.nrepl.middleware.interruptible_eval$evaluate$fn__ 808.invoke (interrupt
at clojure.lang.AFn.applyToHelper (AFn. java:159)
at clojure.lang.AFn.applyTo (AFn.java:151)
at clojure.core$apply.invoke (core.clj:617)
at clojure.core$Swith_bindings_STAR_.doInvoke (core.clj:1788)
at clojure.lang.RestFn.invoke (RestFn. java:425)
at clojure.tools.nrepl.middleware.interruptible_eval$evaluate.invoke (interruptible_evg
at clojure.tools.nrepl.middleware.interruptible_evalS$interruptible_eval$fn_ 849S$fn__ 8%
at clojure.core$Scomps$fn__4154.invoke (core.clj:2330)
at clojure.tools.nrepl.middleware.interruptible_evalrun_nextfn__ 842.invoke (interrupt
at clojure.lang.AFn.run (AFn. java:24)
at java.util.concurrent.ThreadPoolExecutor.runWorker (ThreadPoolExecutor. java:1110)
at java.util.concurrent.ThreadPoolExecutor$Worker.run (ThreadPoolExecutor. java:603)
at java.lang.Thread.run (Thread. java:722)
Caused by: java.lang.RuntimeException: Failure updating row
at user$update_row.invoke (user.clj:22)
24 more
Caused by: java.sqgl.SQLException: Database failure
SELECT FOO, BAR, BAZ
FROM GNIP
failed with ABC123
at user$jdbc_update.invoke (user.clj:6)

4 Chapter 2. License

ible_eval.cl

l.clj:41)
2.invoke (inte

ible_eval.cl

io.aviso/pretty Documentation, Release 0.1.23

at user$make_jdbc_update_workerSreify_214.do_work (user.clj:17)
. 25 more

On a good day, the exception messages will include all the details you need to resolve the problem ... even though
Clojure encourages you to use the ex—info to create an exception, which puts important data into properties of the
exception, which are not normally printed.

Meanwhile, you will have to mentally scan and parse the above text explosion, to parse out file names and line numbers,
and to work backwards from mangled Java names to Clojure names.

It’s one more bit of cognitive load you just don’t need in your day.

Instead, here’s the equivalent, using a hooked version of Clojure’s clojure.repl/pst, modified to use
write—-exception.

user=> (pst)
clojure.core/eval

user/eval 2007
user/make-exception
user/update-row
user/make-jdbc-update-worker/reify/do-work
user/jdbc-update

java.sql.SQLException: Database failure

SELECT FOO, BAR, BAZ
FROM GNIP
failed with ABC123
SQLState: "ABC"
errorCode: 123
java.lang.RuntimeException: Failure updating row
java.lang.RuntimeException: Request handling exception
nil
user=>

As you can see, this lets you focus in on the exact cause and location of your problem.
write-exception flips around the traditional order, providing a chronologically sequential view:
» The stack trace leading to the root exception comes first, and is ordered outermost frame to innermost frame.

» The exception stack comes after the stack trace, and is ordered root exception (innermost) to outermost, reflect-
ing how the stack has unwound, and the root exception was wrapped in new exceptions and rethrown.

The stack trace is carefully formatted for readability, with the left-most column identifying Clojure functions or Java
class and method, and the right columns presenting the file name and line number.

The stack frames themselves are filtered to remove details that are not relevant. This filtering is via an optional function,
so you can define filters that make sense for your code. For example, the default filter omits frames in the clojure.lang
package (they are reduced to ellipses), and truncates the stack trace when when it reaches clojure.main/repl/read-eval-
print.

2.2. Formatted Exceptions 5

io.aviso/pretty Documentation, Release 0.1.23

Repeating stack frames are also identified and reduced to a single line (that identifies the number of frames). This al-
lows your infinite loop that terminates with a StackOverflowException to be reported in just a few lines, not thousands.

The inverted (from Java norms) ordering has several benefits:
» Chronological order is maintained, whereas a Java stack trace is in reverse chronological order.

* The most relevant details are at (or near) the botfom not the fop; this means less “scrolling back to see what
happened”.

The related function, format-exception, produces the same output, but returns it as a string.

For both format-exception and write—exception, output of the stack trace is optional, or can be limited to
a certain number of stack frames.

2.2.2 io.aviso.repl
This namespace includes a function, install-pretty-exceptions, which hooks into all the common ways
that exceptions are output in Clojure and redirects them to use write-exception.

When exceptions occur, they are printed out without a stack trace or properties. The clojure.repl/pst function
is overridden to fully print the exception (with properties and stack trace).

In addition, clojure.stacktrace/print-stack-traceandclojure.stacktrace/print-cause-trace
are overwritten; these are used by clojure.test. Both do the same thing: print out the full exception (again, with
properties and stack trace).

You may not need to invoke this directly, as pretty can also act as a Leiningen Plugin.
2.2.3 io.aviso.logging

This namespace includes functions to change clojure.tools.logging to use Pretty to output exceptions, and
to add a default Thread.UncaughtExceptionHandler that uses clojure.tools.logging.

2.3 Leiningen Plugin

pretty can act as a plugin to Leiningen.

To enable pretty exception reporting automatically, add pretty to both the :plugins and the :dependencies lists of your
project.clj.

(defproject
:plugins [[io.aviso/pretty "0.1.23"]]
:dependencies [...
[io.aviso/pretty "0.1.23"]]
.)

Adjust if necessary, for the current version, “0.1.23”.

This adds middleware to enable pretty exception reporting when running a REPL, tests, or anything else that starts
code in the project.

Another option is to add the following to your ~/.lein/profiles.clj:

ipretty {
:plugins [[io.aviso/pretty "0.1.23"]]
:dependencies [[io.aviso/pretty "0.1.23"]]

6 Chapter 2. License

https://github.com/technomancy/leiningen

io.aviso/pretty Documentation, Release 0.1.23

This creates an opt-in profile that adds and enables pretty exception reporting.

You can then enable pretty in any project, even one that does not normally have pretty as a dependency, as follows:

‘lein with-profiles +pretty run ‘

or

‘lein with-profiles +pretty do clean, test, install ‘

2.4 Binary Output

The io.aviso.binary namespace provides support output of binary data.

Binary data is represented using the protocol BinaryData; this protocol is extended on byte arrays, on String, and on
nil. BinaryData is simply a randomly accessible collection of bytes, with a known length.

(write-binary "Choose immutability and see where it takes you.")

0000: 43 68 6F 6F 73 65 20 69 6D 6D 75 74 61 62 69 6C 69 74 79 20 61 6E 64 20 73 65 65 20 77 68 65 7
0020: 65 20 69 74 20 74 61 6B 65 73 20 79 6F 75 2E

write-binary can write to a java.io.Writer (defaulting to ~out «) or a StringBuilder (or other things, as defined
by the StringWriter protocol). The full version explicitly specifies where to write to, as well as options:

Alternately, format-binary will return the formatted binary output string.

You can also compare two binary data values with write-binary-delta:

("Can you spot the difference?" "Can you spot the difference?")
Peed: 43 61 6E 2@ 79 6F 75 2@ 73 7@ 6F 74 28 74 68 65 | 43 61 6E 28 79 6F 75 20 73 70 6F 74 20 74 68 65

Ba1e: 20 64 66 66 65 72 65 6E 63 65 3F | 28 64 31 66 66 65 72 65 6E 63 65 3F
nil

If the two data are of different lengths, the shorter one is padded with —— to make up the difference.

As with write-binary, there’s a format-binary-delta, and a three-argument version of
write-binary-delta for specifying a StringWriter target.

2.5 Columnar Output

The io.aviso.columns namespace is what’s used by the exceptions namespace to format the exceptions, proper-
ties, and stack traces.

The format-columns function is provided with a number of column definitions, each of which describes the width
and justification of a column. Some column definitions are just a string to be written for that column, such as a column
separator. format—columns returns a function that accepts a StringWriter (such as xout) and the column values.

2.4. Binary Output 7

io.aviso/pretty Documentation, Release 0.1.23

write-rows takes the function provided by format—-columns, plus a set of functions to extract column values,
plus a seq of rows. In most cases, the rows are maps, and the extraction functions are keywords (isn’t Clojure magical

that way?).

Here’s an example, from the exception namespace:

(defn—- write-—

[writer exc

(let [elements (—>> exception expand-stack-trace (map preformat-stack-frame))

formatter (c/format-columns [:right (c/max-value-length elements :formatted-namg

" " (:source =*fontsx)
[:right (c/max-value-length elements :file)]
2
[:right (->> elements (map :line) (map str)
(:reset xfontsx))]
(c/write-rows writer formatter [:formatted—-name
:file
#(if (:1line %) ": M)
:1line]

c/max-1lg

8 Chapter 2.

License

	Sometimes, neatness counts
	License
	ANSI Formatting
	Formatted Exceptions
	Leiningen Plugin
	Binary Output
	Columnar Output

